Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(2): 277-287, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36263987

RESUMO

The presence of fruits provokes significant modifications in plant water relations and leaf gas exchange. The underlying processes driving these modifications are still uncertain and likely depend on the water deficit level. Our objective was to explain and track the modification of leaf-water relations by the presence of fruits and water deficit. With this aim, net photosynthesis rate (AN), stomatal conductance (gs), leaf osmotic potential (Ψπ), leaf soluble sugars and daily changes in a variable related to leaf turgor (leaf patch pressure) were measured in olive trees with and without fruits at the same time, under well-watered (WW) and water stress (WS) conditions. Leaf gas exchange was increased by the presence of fruits, this effect being observed mainly in WW trees, likely because under severe water stress, the dominant process is the response of the plant to the water stress and the presence of fruits has less impact on the leaf gas exchange. Ψπ was also higher for WW trees with fruits than for WW trees without fruits. Moreover, leaves from trees without fruits presented higher concentrations of soluble sugars and starch than leaves from trees with fruits for both WW and WS, these differences matching those found in Ψπ. Thus, the sugar accumulation would have had a dual effect because on one hand, it decreased Ψπ, and on the other hand, it would have downregulated AN, and finally gs in WW trees. Interestingly, the modification of Ψπ by the presence of fruits affected turgor in WW trees, the change in which can be identified with leaf turgor sensors. We conclude that plant water relationships and leaf gas exchange are modified by the presence of fruits through their effect on the export of sugars from leaves to fruits. The possibility of automatically identifying the onset of sugar demand by the fruit through the use of sensors, in addition to the water stress produced by soil water deficit and atmosphere drought, could be of great help for fruit orchard management in the future.


Assuntos
Frutas , Olea , Olea/fisiologia , Desidratação , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Carboidratos , Secas , Açúcares , Árvores/fisiologia
2.
Tree Physiol ; 43(2): 288-300, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36250574

RESUMO

There is a controversy regarding when it is appropriate to apply the irrigation restriction in almond trees (Prunus dulcis Mill.) to save water without penalizing yield. We hypothesized that knowing when plants demand fewer photoassimilates would be a good indicator of less sensitivity of the crop to water deficit. One parameter that defines the photosynthetic capacity is the triose phosphate utilization (TPU). Due to its connection to the export of sugars from the leaves to other sink organs, it is a good candidate for being such an indicator. The objective was to analyze the seasonal evolution of the photosynthetic capacity of three almond cultivars (cvs Guara, Marta and Lauranne) subjected to water stress during vegetative, kernel-filling and postharvest stages. Two sustained deficit irrigation (SDI) treatments (SDI75 and SDI65 with water reductions of 25 and 35%, respectively) and a control treatment (FI) consisting of fully irrigated trees were applied. The response of curves AN-Ci was analyzed to assess the maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), TPU and mesophyll conductance to CO2. In addition, leaf water potential and yield were measured. Our experimental findings showed any significant differences in the variables analyzed among cultivars and irrigation treatments. However, consistent differences arose when the results were compared among the phenological stages. During the kernel-filling and the postharvest stages, a progressive limitation by TPU was measured, suggesting that the demand for photoassimilates by the plant was reduced. This result was supported by the correlation found between TPU and fruit growth rate. As a consequence, a downregulation in Jmax and Vcmax was also measured. This study confirms that the kernel-filling stage might be a good time to apply a reduction in the irrigation and suggests a method to detect the best moments to apply a regulated deficit irrigation in almond trees.


Assuntos
Prunus dulcis , Prunus , Prunus/fisiologia , Nozes , Regulação para Baixo , Fotossíntese , Folhas de Planta/fisiologia , Plantas , Fosfatos , Trioses
3.
Tree Physiol ; 37(7): 847-850, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898993
4.
Plant Cell Environ ; 39(5): 965-82, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26297108

RESUMO

Water limitation is a major global constraint for plant productivity that is likely to be exacerbated by climate change. Hence, improving plant water use efficiency (WUE) has become a major goal for the near future. At the leaf level, WUE is the ratio between photosynthesis and transpiration. Maintaining high photosynthesis under water stress, while improving WUE requires either increasing mesophyll conductance (gm ) and/or improving the biochemical capacity for CO2 assimilation-in which Rubisco properties play a key role, especially in C3 plants at current atmospheric CO2 . The goals of the present analysis are: (1) to summarize the evidence that improving gm and/or Rubisco can result in increased WUE; (2) to review the degree of success of early attempts to genetically manipulate gm or Rubisco; (3) to analyse how gm , gsw and the Rubisco's maximum velocity (Vcmax ) co-vary across different plant species in well-watered and drought-stressed conditions; (4) to examine how these variations cause differences in WUE and what is the overall extent of variation in individual determinants of WUE; and finally, (5) to use simulation analysis to provide a theoretical framework for the possible control of WUE by gm and Rubisco catalytic constants vis-à-vis gsw under water limitations.


Assuntos
Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Água/metabolismo , Fotossíntese
5.
Plant Sci ; 226: 61-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25113451

RESUMO

Because of its catalytic inefficiencies, Rubisco is the most obvious target for improvement to enhance the photosynthetic capacity of plants. Two hypotheses are tested in the present work: (1) existing Rubiscos have optimal kinetic properties to maximize photosynthetic carbon assimilation in existing higher plants; (2) current knowledge allows proposal of changes to kinetic properties to make Rubiscos more suited to changed conditions in chloroplasts that are likely to occur with climate change. The catalytic mechanism of Rubisco results in higher catalytic rates of carboxylation being associated with decreased affinity for CO2, so that selection for different environments involves a trade-off between these two properties. The simulations performed in this study confirm that the optimality of Rubisco kinetics depends on the species and the environmental conditions. In particular, environmental drivers affecting the CO2 availability for carboxylation (Cc) or directly shifting the photosynthetic limitations between Rubisco and RuBP regeneration determine to what extend Rubisco kinetics are optimally suited to maximize CO2 assimilation rate. In general, modeled values for optimal kinetic reflect the predominant environmental conditions currently encountered by the species in the field. Under future climatic conditions, photosynthetic CO2 assimilation will be limited by RuBP-regeneration, especially in the absence of water stress, the largest rise in [CO2] and the lowest increases in temperature. Under these conditions, the model predicts that optimal Rubisco should have high Sc/o and low kcat(c).


Assuntos
Mudança Climática , Modelos Biológicos , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Meio Ambiente , Cinética , Oxigênio/metabolismo , Temperatura
7.
Plant Biol (Stuttg) ; 14(4): 666-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22288430

RESUMO

The non-invasive leaf patch clamp pressure (LPCP) probe measures the attenuated pressure of a leaf patch, P(p) , in response to an externally applied magnetic force. P(p) is inversely coupled with leaf turgor pressure, P(c) , i.e. at high P(c) values the P(p) values are small and at low P(c) values the P(p) values are high. This relationship between P(c) and P(p) could also be verified for 2-m tall olive trees under laboratory conditions using the cell turgor pressure probe. When the laboratory plants were subjected to severe water stress (P(c) dropped below ca. 50 kPa), P(p) curves show reverse diurnal changes, i.e. during the light regime (high transpiration) a minimum P(p) value, and during darkness a peak P(p) value is recorded. This reversal of the P(p) curves was completely reversible. Upon watering, the original diurnal P(p) changes were re-established within 2-3 days. Olive trees in the field showed a similar turnover of the shape of the P(p) curves upon drought, despite pronounced fluctuations in microclimate. The reversal of the P(p) curves is most likely due to accumulation of air in the leaves. This assumption was supported with cross-sections through leaves subjected to prolonged drought. In contrast to well-watered leaves, microscopic inspection of leaves exhibiting inverse diurnal P(p) curves revealed large air-filled areas in parenchyma tissue. Significantly larger amounts of air could also be extracted from water-stressed leaves than from well-watered leaves using the cell turgor pressure probe. Furthermore, theoretical analysis of the experimental P(p) curves shows that the propagation of pressure through the nearly turgorless leaf must be exclusively dictated by air. Equations are derived that provide valuable information about the water status of olive leaves close to zero P(c) .


Assuntos
Olea/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Desidratação , Luz , Técnicas de Patch-Clamp , Transpiração Vegetal , Pressão
8.
J Exp Bot ; 60(8): 2391-405, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19457982

RESUMO

The present work aims to study the interactive effect of drought stress and high vapour pressure deficit (VPD) on leaf gas exchange, and especially on mesophyll conductance to CO(2) (g(m)), in two woody species of great agronomical importance in the Mediterranean basin: Vitis vinifera L. cv. Tempranillo and Olea europaea L. cv. Manzanilla. Plants were grown in specially designed outdoor chambers with ambient and below ambient VPD, under both well-irrigated and drought conditions. g(m) was estimated by the variable J method from simultaneous measurements of gas exchange and fluorescence. In both species, the response to soil water deficit was larger in g(s) than in g(m), and more important than the response to VPD. Olea europaea was apparently more sensitive to VPD, so that plants growing in more humid chambers showed higher g(s) and g(m). In V. vinifera, in contrast, soil water deficit dominated the response of g(s) and g(m). Consequently, changes in g(m)/g(s) were more related to VPD in O. europaea and to soil water deficit in V. vinifera. Most of the limitations of photosynthesis were diffusional and especially due to stomatal closure. No biochemical limitation was detected. The results showed that structural parameters played an important role in determining g(m) during the acclimation process. Although the relationship between leaf mass per unit area (M(A)) with g(m) was scattered, it imposed a limitation to the maximum g(m) achievable, with higher values of M(A) in O. europaea at lower g(m) values. M(A) decreased under water stress in O. europaea but it increased in V. vinifera. This resulted in a negative relationship between M(A) and the CO(2) draw-down between substomatal cavities and chloroplasts in O. europaea, while being positive in V. vinifera.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Olea/química , Folhas de Planta/química , Solo/análise , Vitis/química , Pressão do Ar , Cloroplastos/química , Cloroplastos/metabolismo , Secas , Hibridização Genética , Olea/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Vitis/metabolismo , Água/metabolismo
9.
New Phytol ; 175(3): 501-511, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17635225

RESUMO

The close rosette growth form, short petioles and small leaves of Arabidopsis thaliana make measurements with commercial gas exchange cuvettes difficult. This difficulty can be overcome by growing A. thaliana plants in 'ice-cream cone-like' soil pots. This design permitted simultaneous gas exchange and chlorophyll fluorescence measurements from which the first estimates of mesophyll conductance to CO(2) (g(m)) in Arabidopsis were obtained and used to determine photosynthetic limitations during plant ageing from c. 30-45 d. Estimations of g(m) showed maximum values of 0.2 mol CO(2) m(-2) s(-1) bar(-1), lower than expected for a thin-leaved annual species. The parameterization of the response of net photosynthesis (A(N)) to chloroplast CO(2) concentrations (C(c)) yielded estimations of the maximum velocity of carboxylation (V(c,max_Cc)) which were also lower than those reported for other annual species. As A. thaliana plants aged from 30 to 45 d, there was a 40% decline of A(N) that was entirely the result of increased diffusional limitations to CO(2) transfer, with g(m) being the largest. The results suggest that in A. thaliana A(N) is limited by low g(m) and low capacity for carboxylation. Decreased g(m) is the main factor involved in early age-induced photosynthetic decline.


Assuntos
Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fluorescência , Fotossíntese , Folhas de Planta/citologia , Folhas de Planta/metabolismo
10.
J Exp Bot ; 58(6): 1533-43, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17339650

RESUMO

The measurement of the response of net photosynthesis to leaf internal CO2 (i.e. A-Ci curves) is widely used for ecophysiological studies. Most studies did not consider CO2 exchange between the chamber and the surrounding air, especially at the two extremes of A-Ci curves, where large CO2 gradients are created, leading to erroneous estimations of A and Ci. A quantitative analysis of CO2 leakage in the chamber of a portable open gas exchange system (Li-6400, LI-COR Inc., NE, USA) was performed. In an empty chamber, the measured CO2 leakage was similar to that calculated using the manufacturer's equations. However, in the presence of a photosynthetically inactive leaf, the magnitude of leakage was substantially decreased, although still significant. These results, together with the analysis of the effects of chamber size, tightness, flow rate, and gasket material, suggest that the leakage is larger at the interface between the gaskets than through the gaskets. This differential leakage rate affects the parameterization by photosynthesis models. The magnitude of these errors was assessed in tobacco plants. The results showed that leakage results in a 10% overestimation of the leaf maximum capacity for carboxylation (Vc,max) and a 40% overestimation of day respiration (Rl). Using the manufacturer's equations resulted in larger, non-realistic corrections of the true values. The photosynthetic response to CO2 concentrations at the chloroplast (i.e. A-Cc curves) was significantly less affected by leakage than A-Ci curves. Therefore, photosynthetic parameterization can be improved by: (i) correcting A and Ci values for chamber leakage estimated using a photosynthetically inactive leaf; and (ii) using A-Cc instead of A-Ci curves.


Assuntos
Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cucumis sativus/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Vitis/fisiologia , Cucumis sativus/genética , Ecossistema , Modelos Biológicos , Folhas de Planta/genética , Vitis/genética
11.
Tree Physiol ; 26(11): 1445-56, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16877329

RESUMO

We quantified parameters for a model of leaf-level photosynthesis for olive, and tested the model against an independent dataset. Specific temperature-dependence parameters of the model for olive leaves were measured, as well as the relationship of the model parameters with area-based leaf nitrogen (N) content. The effect of soil water deficit on leaf photosynthesis was examined by applying two irrigation treatments to 29-year-old trees growing in a plantation: drip irrigation sufficient to meet the crop water requirements (I) and dry-farming (D). In both treatments, leaves had a higher photosynthetic capacity in April than in August. In August, photosynthetic capacity was lower in D trees than in I trees. Leaf photosynthetic capacity was linearly and positively related to leaf N content on an area basis (N(a)) and to leaf mass per unit area (LMA), and the regression slope varied with irrigation treatment. The seasonal reduction in N(a) was used in the model to predict photosynthesis under drought conditions. Olive leaves showed a clear limitation of photosynthesis by triose phosphate utilization (TPU) even at 40 degrees C, and the data suggest that olive invests fewer resources in TPU than other species. The seasonal decrease in photosynthetic capacity moderated the stomatal limitation to carbon dioxide (CO(2)) fixation as soil water deficit increased. Further, it enabled leaves to operate close to the transition point between photosynthetic limitation due to RuBP carboxylation capacity and that due to RuBP regeneration capacity, and resulted in a near constant value of internal CO(2) concentration from April to August. Under well watered conditions, N-use efficiency of the olive leaves was enhanced at the expense of reduced water-use efficiency.


Assuntos
Desastres , Olea/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Clima , Cinética , Modelos Biológicos , Nitrogênio/análise , Chuva , Espanha , Temperatura
12.
Tree Physiol ; 26(6): 719-28, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16510387

RESUMO

The compensation heat pulse method is widely used to estimate sap flow in conducting organs of woody plants. Being an invasive technique, calibration is crucial to derive correction factors for accurately estimating the sap flow value from the measured heat pulse velocity. We compared the results of excision and perfusion calibration experiments made with mature olive (Olea europaea L. 'Manzanilla de Sevilla'), plum (Prunus domestica L. 'Songal') and orange (Citrus sinensis (L.) Osbeck. 'Cadenero') trees. The calibration experiments were designed according to current knowledge on the application of the technique and the analysis of measured heat pulse velocities. Data on xylem characteristics were obtained from the experimental trees and related to the results of the calibration experiments. The most accurate sap flow values were obtained by assuming a wound width of 2.0 mm for olive and 2.4 mm for plum and orange. Although the three possible methods of integrating the sap velocity profiles produced similar results for all three species, the best results were obtained by calculating sap flow as the weighted sum of the product of sap velocity and the associated sapwood area across the four sensors of the heat-pulse-velocity probes. Anatomical observations showed that the xylem of the studied species can be considered thermally homogeneous. Vessel lumen diameter in orange trees was about twice that in the olive and plum, but vessel density was less than half. Total vessel lumen area per transverse section of xylem tissue was greater in plum than in the other species. These and other anatomical and hydraulic differences may account for the different calibration results obtained for each species.


Assuntos
Transporte Biológico , Citrus sinensis/fisiologia , Olea/fisiologia , Prunus/fisiologia , Xilema/anatomia & histologia , Fenômenos Biomecânicos/métodos , Calibragem , Citrus sinensis/anatomia & histologia , Olea/anatomia & histologia , Perfusão/métodos , Folhas de Planta/metabolismo , Prunus/anatomia & histologia , Água/metabolismo , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...